Collagen-Based Mechanical Anisotropy of the Tectorial Membrane: Implications for Inter-Row Coupling of Outer Hair Cell Bundles

نویسندگان

  • Núria Gavara
  • Richard S. Chadwick
چکیده

BACKGROUND The tectorial membrane (TM) in the mammalian cochlea displays anisotropy, where mechanical or structural properties differ along varying directions. The anisotropy arises from the presence of collagen fibrils organized in fibers of approximately 1 microm diameter that run radially across the TM. Mechanical coupling between the TM and the sensory epithelia is required for normal hearing. However, the lack of a suitable technique to measure mechanical anisotropy at the microscale level has hindered understanding of the TM's precise role. METHODOLOGY/PRINCIPAL FINDINGS Here we report values of the three elastic moduli that characterize the anisotropic mechanical properties of the TM. Our novel technique combined Atomic Force Microscopy (AFM), modeling, and optical tracking of microspheres to determine the elastic moduli. We found that the TM's large mechanical anisotropy results in a marked transmission of deformations along the direction that maximizes sensory cell excitation, whereas in the perpendicular direction the transmission is greatly reduced. CONCLUSIONS/SIGNIFICANCE Computational results, based on our values of elastic moduli, suggest that the TM facilitates the directional cooperativity of sensory cells in the cochlea, and that mechanical properties of the TM are tuned to guarantee that the magnitude of sound-induced tip-link stretching remains similar along the length of the cochlea. Furthermore, we anticipate our assay to be a starting point for other studies of biological tissues that require directional functionality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroplastin Isoform Np55 Is Expressed in the Stereocilia of Outer Hair Cells and Required for Normal Outer Hair Cell Function.

UNLABELLED Neuroplastin (Nptn) is a member of the Ig superfamily and is expressed in two isoforms, Np55 and Np65. Np65 regulates synaptic transmission but the function of Np55 is unknown. In an N-ethyl-N-nitrosaurea mutagenesis screen, we have now generated a mouse line with an Nptn mutation that causes deafness. We show that Np55 is expressed in stereocilia of outer hair cells (OHCs) but not i...

متن کامل

Frequency - Dependent Shear Properties of the Tectorial Membrane

The vertebrate sense of hearing relies on a series of mechanical processes that deflect the sensory bundles of hair cells in the cochlea. Overlying these bundles is an acellular gel called the tectorial membrane (TM), which is believed to play a critical mechanical role in cochlear function. A variety of recent studies have shown that genetic changes to proteins found in the TM, such as α-tecto...

متن کامل

Measuring Material Properties of Tectorial Membranes from Normal and Genetically Modified Mice

With the discovery of hearing disorders caused by mutations in proteins expressed in the tectorial membrane (TM), the importance of the TM in cochlear mechanics has never been clearer. However, the exact role of the TM in cochlear mechanics remains a mystery. In this thesis, I have investigated material properties of two mouse models of genetic hearing disorders that affect proteins found in th...

متن کامل

Direct visualization of organ of corti kinematics in a hemicochlea.

The basilar membrane in the mammalian cochlea vibrates when the cochlea receives a sound stimulus. This mechanical vibration is transduced into hair cell receptor potentials and thereafter encoded by action potentials in the auditory nerve. Knowledge of the mechanical transformation that converts basilar membrane vibration into hair cell stimulation has been limited, until recently, to hypothet...

متن کامل

[Scanning electron microscopic observation on the cochlea treated with frozen resin cracking method].

By the use of frozen resin cracking method , scanning electron microscopy (SEM) makes it possible to investigate the deeper and finer structures of the inner ear. Another merit of this method is to obtain any sections of the organs without any significant artifactual damages to the tissues. The inner ears of the guinea pig were fixed and stained with osmic acid. After the cracking procedure fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009